organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hiroyuki Oku,* Teruya Endo, Keiichi Yamada and Ryoichi Katakai

Department of Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan

Correspondence e-mail: oku@chem.gunma-u.ac.jp

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.007 Å R factor = 0.035 wR factor = 0.087 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

tert-Butoxycarbonyl-L-leucyl-L-valine trichloroethyl ester (Boc-L-Leu-L-Val-OTce)

The title compound, $C_{18}H_{31}Cl_3N_2O_5$, an enantiopure dipeptide trichloroethyl ester, is one of two starting fragments in the synthesis of cyclosporin O analogs. In the crystal structure, molecules are linked by $N-H\cdots O=C$ hydrogen bonds, forming a β -spiral assembly along the *c* axis. Received 2 May 2006 Accepted 12 May 2006

Comment

Cyclosporins are naturally occurring physiologically active peptides containing *N*-methyl amino acid residues, which are potent chemotherapeutic agents (Humpherey & Chamberlin, 1997; Walgate, 1985; Stiller *et al.*, 1984). The 2,2,2-trichloroethyl group (–OTce) is widely employed for carboxyl protection, and the compound (I) is one of two starting –OTce protected fragments in our synthetic study of cyclosporin O derivatives (Endo *et al.*, 2003). We have recently reported the crystal structure of the other fragment, Boc-L-Leu-L-Ala-OTce (II) (Oku, *et al.*, 2005). In this paper, we have studied the structure of (I) to assess the enantiopurity and crystallinity.

The molecular structure of (I) and the packing viewed along the *c* and *a* axes are shown in Figs. 1, 2 and 3, respectively. The crystal structure of (I) is isostructural to that of (II) (space group $P6_5$; Oku *et al.*, 2005). The cell lengths *a* and *c* are longer than those of (II) by 0.140 (5) and 0.477 (13) Å, respectively. The main chain torsion angles of (I) deviate by only 2.0–5.3° from those of (II). As observed in (II), the structure of (I) adopts an extended β -sheet conformation (Table 1) and molecules are tightly linked together by N–H···O=C hydrogen bonds (Table 2), forming a β -spiral assembly along the *c* axis (Fig. 3). The melting point of (I) is 38 K lower than

that of (II). This probably corresponds to the relatively high thermal motion of the Val side chain (atoms C33/C34/C35) of

© 2006 International Union of Crystallography All rights reserved

(I).

A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Experimental

The title peptide, (I), was prepared by the coupling of Boc-Leu-OH-0.5H₂O (4.5 g, 18 mmol) and HCl-Val-OTce (4.3 g, 15 mmol) in a solution-phase synthesis; yield 6.1 g (87%). Colorless needle crystals of (I) were grown by slow diffusion of hexane vapor into a solution in ethyl acetate. Analytical data (melting point, ¹H NMR, ESI–MS, and $[\alpha]_D^{20}$ are in accordance with the expected structure; $[\alpha]_D^{20} = -47.6^{\circ}$ (*c* = 0.1, methanol), m.p. 377–379 K.

Crystal data

 $C_{18}H_{31}Cl_3N_2O_5$ $M_r = 461.81$ Hexagonal, $P6_5$ a = 12.245 (5) Å c = 27.416 (13) Å V = 3560 (3) Å³ Z = 6

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: none 32841 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.087$ S = 0.974352 reflections 285 parameters All H-atom parameters refined $D_x = 1.292 \text{ Mg m}^{-3}$ Cu K\alpha radiation $\mu = 3.75 \text{ mm}^{-1}$ T = 173.1 K Needle, colorless 0.20 \times 0.01 \times 0.01 mm

4352 independent reflections 1558 reflections with $F^2 > 2\sigma(F^2)$ $R_{\text{int}} = 0.068$ $\theta_{\text{max}} = 68.2^{\circ}$

$$\begin{split} &w = 4F_{\rm o}^{~2}/[0.0002F_{\rm o}^{~2} + 0.2\sigma(F_{\rm o}^{~2}) \\ &+ 0.1] \\ &(\Delta/\sigma)_{\rm max} < 0.001 \\ &\Delta\rho_{\rm max} = 1.17~{\rm e}~{\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.93~{\rm e}~{\rm \AA}^{-3} \\ &{\rm Absolute\ structure:\ Flack\ (1983),} \\ &2123~{\rm Friedel\ pairs} \\ &{\rm Flack\ parameter:\ 0.015\ (15)} \end{split}$$

A packing diagram of (I), projected down the c axis. H atoms have been omitted except for those of NH groups.

Figure 3

A packing diagram of (I), projected down the *a* axis. β -Spiral colums are formed along the *c* axis. H atoms have been omitted except for those of NH groups. Dashed lines indicate hydrogen bonds.

Table 1 Selected torsion angles (°).

C32-O401-C41-C42	154.9 (4)	C22-N301-C31-C32	-63.9(4)
C41-O401-C32-C31	-179.8(3)	C31-N301-C22-C21	177.7 (3)
C15-N201-C21-C22	-96.9(4)	N201-C21-C22-N301	128.6 (3)
C21 - N201 - C15 - O101	178.5 (4)	N301-C31-C32-O401	155.1 (3)

Table 2 Hydrogen-bond geometry (Å, °).

<i>D</i> -H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline N201 - H201 \cdots O102^{i} \\ N301 - H301 \cdots O201^{ii} \end{array}$	0.95	1.98	2.902 (4)	162
	0.94	2.01	2.947 (4)	177

Symmetry codes: (i) x - y + 1, $x, z - \frac{1}{6}$; (ii) y, -x + y + 1, $z + \frac{1}{6}$.

The ratio of observed/unique reflections was relatively low (36%), although the X-ray measurement was carried out at 173 K with Cu $K\alpha$ radiation. H atoms were positioned geometrically, with C–H and N–H = 0.95 Å, and refined using a riding model, with $U_{\rm iso}(H)$ assigned to be $1.2U_{\rm eq}$ (carrier atom). The absolute configuration of (I) agrees with the fact that the ¹H NMR spectroscopic data detected no racemization in the preparation.

Data collection: *RAPID-AUTO* (Rigaku, 2003); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku, 2003); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP* (Johnson, 1965); software used to prepare material for publication: *CrystalStructure*.

HO is grateful for a Grant-in-Aid for Scientific Research on Priority Areas (No. 14078101 and 16033211, Reaction Control of Dynamic Complexes) from the Ministry of Education Culture, Sports, Science and Technology, Japan.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.

Endo, T., Oku, H., Yamada, K. & Katakai, R. (2003). *Peptide Science 2002*, edited by T. Yamada, pp. 313–316. Osaka: The Japanese Peptide Society. Flack, H. D. (1983). *Acta Cryst.* A**39**, 876–881.

Humpherey, J. M. & Chamberlin, A. R. (1997). *Chem. Rev.* 97, 2243–2266.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Oku, H., Endo, T., Yamada, K. & Katakai, R. (2005). Acta Cryst. E61, o3864– o3866.

Rigaku (2003). CrystalStructure and RAPID-AUTO. Rigaku Corporation, Akishima, Tokyo, Japan.

Stiller, C. R., Dupre, J., Gent, M., Jenner, M. R., Keown, P. A., Laupacis, A., Martel, R., Rodger, N. W., von Graffenried, B. & Wolfe, B. M. (1984). *Science*, 223, 1362–1367.

Walgate, R. (1985). Nature (London), 318, 3.